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Abstract

Dynamic anisotropic elastic constants of CANDU Zr–2.5Nb pressure tube materials were determined by high

temperature resonant ultrasound spectroscopy (RUS). The resonance frequencies were measured using a couple of

alumina waveguides and wide-band ultrasonic transducers in a small furnace. The rectangular parallelepiped specimens

were fabricated along with the longitudinal, radial and transverse direction of the pressure tube. The initial estimates for

RUS were obtained from the orientation distribution function by X-ray pole figure and elastic stiffness of single crystal

zirconium. A nine elastic stiffness tensor for orthotropic symmetry was determined in the range of room temperature

�500 �C. As the temperature increases, the elastic constant tensor, cij gradually decreases. Higher elastic constants

along the transverse direction compared to those along the longitudinal or radial direction are similar to the case of

Young’s modulus or shear modulus. A crossing of elastic constants along the longitudinal direction and radial direction

was observed near 120–150 �C. This fact could correlate to the crossing characteristics of c44 and c66 of a zirconium

single crystal in the temperature range. � 2002 Elsevier Science B.V. All rights reserved.

PACS: 62.20.D

1. Introduction

The elastic moduli of materials are important in en-

gineering, such as in mechanical design, fracture analysis

and life-time estimation. To determine the elastic moduli

requires many samples with different compositions,

fabrication processes and heat treatments. For aniso-

tropic materials, such as composite materials or textured

materials, it is more difficult to determine the elastic

moduli.

Resonant ultrasound spectroscopy (RUS) is used to

determine the elastic stiffness for various shapes of

samples, i.e. spherical, cylindrical, or rectangular paral-

lelepiped. Theoretically, a maximum of 21 tensor ele-

ments of elastic stiffness for the triclinic crystal (the

lowest-symmetry crystal) can be determined with one

specimen. However, for such a low-symmetry crystal, it

is difficult to assimilate properties relating to stress

waves and elasticity [1]. Practically, RUS can determine

nine tensor elements for orthotropic symmetry as well as

higher-symmetry, such as isotropic, cubic, hexagonal

and tetragonal symmetry.

One of the key elements in RUS is to determine the

symmetry and the initial estimate of elastic stiffness in

advance. The initial estimate should be close to the true

value and can be obtained from the literature, experi-

ence, other measurements, etc. The test sample should

be machined accurately. The calculated resonance fre-

quencies and modes should be matched to the measured

values by RUS and the elastic stiffness can be converged

by comparison and iteration.

The Zr–2.5Nb alloy for the pressure tubes in CAN-

DU (CANadian Deuterium Uranium) reactors have

developed a strong texture due to the limited slip system

during the extrusion process, leading to anisotropic

properties. The material properties strongly depend on
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the orientation distributions of grains, which result in a

directional anisotropy of elastic stiffness, thermal ex-

pansion coefficients, etc. To characterize the degree of

anisotropy, it is necessary to correctly determine the

anisotropic elastic moduli depending on the direction of

the tube samples. The anisotropy of the Zr–2.5Nb alloy

could be treated as orthotropic symmetry, consisting of

three principal coordinates such as radial, transverse and

longitudinal direction.

Initial approximated elastic stiffness has been esti-

mated by the orientation distribution function (ODF)

from X-ray pole figure data and the elastic stiffness of

single crystal zirconium. Based on the initial estimates,

anisotropic elastic stiffness of the Zr–2.5Nb alloy has

been determined by RUS. Temperature dependency of

anisotropic elastic constants of the Zr–2.5Nb materials

was determined by high temperature RUS based on the

room temperature values of the anisotropic elastic con-

stant. A nine elastic stiffness tensor for the orthotropic

symmetry was determined in the range of room tem-

perature �500 �C.

2. ODF and anisotropic elastic stiffness

Polycrystalline Zr–2.5Nb pressure tube materials is a

hexagonal closed packed (hcp) structure and is textured

along the circumferential direction. The elastic stiffness

on the tubular sample coordinate (longitudinal, radial

and circumferential directions) can be expressed as an

orthotropic symmetry and represented as

cij ¼

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

0
BBBBBB@

1
CCCCCCA
: ð1Þ

Macroscopic properties of a sample, E can be obtained

by the integration of the properties, EðgÞ depending

upon the orientation of an individual grain, g and

weighting factor, i.e. ODF of grains, f ðgÞ along the total
orientation space [2]:

E ¼
Z

EðgÞ � f ðgÞdg: ð2Þ

In order to represent the elastic stiffness tensor of

rank ¼ 4 to 6� 6 matrix form, the usual four-to-two

contraction scheme is adopted: 11 ! 1, 22 ! 2, 33 ! 3,

23 ! 4, 13 ! 5 and 12 ! 6.

The anisotropy of the polycrystalline with textured

structure can be calculated as an average of the material

properties of each grain if interactions between grains

are negligible. The averaged elastic stiffness along the

sample coordinate can be estimated by knowing the

elastic stiffness of a single crystal and the orientation

distribution of grains from the pole figure data by X-ray

or neutron diffraction. Based on the pole figure data, the

ODF can be calculated by generalized spherical har-

monics and series expansion coefficients [3]:

xðn;/;uÞ ¼
X4

l¼0

X4

m¼l

X4

n¼�l

WlmnZlmn e
�im/ e�inu; ð3Þ

where xðn;/;uÞ is ODF for the standard Euler angles

(n;/;u) between the global coordinate system and local

coordinate system, Zlmn is the generalized Legendre

polynomial defined by Roe [4], Wlmn is the series ex-

pansion coefficient adopted from Roe, or notation by

Bunge [5]. When a tensor rank with p is averaged, Wlmn

includes the elements of l6 p, which implies a maximum

number tensor element, l, m and n is 4 for the case of an

elastic stiffness tensor. Wlmn and Zlmn for orthotropic

symmetry have been calculated by Morris [6].

In order to explain actual elastic stiffness, various

models or approximations have been suggested. Based

on the orientation distribution by a sample coordinate,

the elastic stiffness can be estimated by either Voigt’s

approximation, the Reuss approximation, or the self-

consistent iteration method, etc. Voigt’s approximation

assumes that the total stress is a sum of the individual

stresses on each grain, whereas in the Reuss approxi-

mation a sum of the individual strains on each grain is

assumed. Both approximations represent two extreme

cases and can be regarded as upper and lower bounds [7]:

cijkl ¼
1

8p2

Z
cijklðXÞdX ðVoigt’s approximationÞ;

ð4Þ

Sijkl ¼
1

8p2

Z
SijklðXÞdX ðReuss approximationÞ; ð5Þ

where cijkl and cijkl are the averaged and individual

elastic stiffness, Sijkl and Sijkl are the averaged and indi-

vidual elastic compliance, X is Euler angles, h, /, u andR
dX ¼ 8p2.

3. Elastic stiffness by resonant ultrasound spectroscopy

Free vibration or resonance is sensitive to the mi-

croscopic and macroscopic properties of the materials.

Because RUS can determine accurate elastic stiffness

and ultrasonic attenuation, it can be applied to materials

characterization, non-destructive testing, etc. [8]. An

exact analytical solution of the free vibration problem to

determine resonance frequencies is not known or avail-

able a priori. Only approximated solutions are available

by numerical analysis, such as the finite element method

or minimization of energy. The fundamental theory of

resonance was developed by Maynard [9], and theoret-
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ical calculations and experiments for the resonance of an

elastically isotropic rectangular parallelepiped specimen

were made by Holland [10] and Demarest [11]. Those

results were generalized by Ohno [12] and comprehen-

sive applications to the solid-state physics were made by

Migliori et al. [13].

The eigenvector or eigenfrequency of vibrating solids

can be calculated by a theory of the minimization of

energy, i.e. a mechanical Lagrangian of elastic solids

with some approximations. In classical mechanics, the

solution to Lagrangian for free vibration can be ex-

pressed as the elastic wave equation,

qx2ui þ
X
j;k;l

cijkl
o2uk
oxjoxl

¼ 0: ð6Þ

This equation is solved subject to the vanishing of the ith

component of the surface traction vector,

X
j;k;l

nj!cijkl ¼
X
j

nj!rij ¼ 0; ð7Þ

where q is density, x is frequency, ui is the ith compo-

nent of the displacement vector, cijkl is the elastic mod-

ulus tensor, nj is the unit vector normal to the surface

and rij is the stress tensor. While the direct (forward)

problem (calculation of resonance frequencies based on

sample description) is challenging in its own right, the

inverse problem (calculation of elastic constants from

measured frequencies) is considerably more difficult. A

combination of ui satisfying those conditions is dis-

placement corresponding to the normal mode free vi-

bration frequency. Based on this fact, an algorithm for

the calculation of frequencies corresponding to the

minimization of energy using the Rayleigh–Ritz method

was developed by Demarest [11]. The resonance fre-

quencies can be calculated for a sample with known

density, dimension, orientation and elastic stiffness.

Actually, because the solution of the inverse problem is

not simple and no exact solution is available, non-linear

optimization procedures are the best option. A com-

puter code has been developed based on a fast and ef-

ficient solution of the direct problem, which is then used

in an iterative Levenburg–Marquardt scheme to solve

the inverse problem with the figure of merit [14].

4. Experimental

4.1. Specimen

Nuclear grade Zr–2.5Nb CANDU pressure tube

materials are used as specimens. From the pole figures of

(0 0 0 2), (1010) and (1011) for the Zr–2.5Nb alloy

shown in Fig. 1, this material exhibits a strong textured

structure due to extrusion processes.

4.2. Calculation of the initial estimate of anisotropic

elastic stiffness

The ODF of the Zr–2.5Nb alloy has been calculated

using a computer program, ‘popLA’, by the Los Alamos

National Laboratory [15]. The raw data file of the X-ray

pole figure was converted to the ASCII format as re-

quired by the program. The angles of orientation dis-

tribution can be represented by one of the notations by

Euler, Roe-Matties or Bunge [15].

With the elastic stiffness of single crystal zirconium

[16], shown in Table 1, and the weight factor of indi-

vidual grains obtained from the ODF, the averaged

elastic stiffness of the polycrystalline Zr–2.5Nb alloy has

been obtained using Voigt’s approximation, the Reuss

approximation, or the self-consistent method by itera-

tion. The subscripts in Table 1 are referred to as the

Fig. 1. Pole figures for Zr–2.5Nb pressure tube materials.
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crystallite coordinate, i.e. 1ð¼ 2Þ ¼ a-axis, 3 ¼ c-axis in
the hcp single crystal orientation.

Initial estimates of the elastic stiffness of the poly-

crystalline Zr–2.5Nb alloy are shown in Table 2. The

subscripts refer the tubular sample coordinate, i.e. 1 ¼
radial, 2 ¼ transverse and 3 ¼ longitudinal direction.

The anisotropic nature along longitudinal, radial and

circumferential directions can make it the orthotropic

symmetry, which requires a nine independent elastic stiff-

ness.

4.3. Determination of anisotropic elastic stiffness by RUS

The high temperature RUS device was assembled as

shown in Fig. 2. A small furnace and a temperature

controller were attached to the basic RUS device, which

consists of a synthesizer to generate continuous fre-

quencies and two wide-band ultrasonic transducers for

sending and receiving signals in a vacuum system. In

order to measure the resonance frequency at the high

temperature, the specimen was inserted between two

wave guides with ultrasonic transducers, one is a trans-

mitter and the other is a receiver. Minimal force was

applied in order to hold the specimen at the corners to

allow free vibration of the specimen, and controlled

accurately (<1 g) by a load cell, spring device, and

positioning device. The thermocouple should not be in

contact to the specimen because the resonance fre-

quencies and modes are influenced by the contact. In

order to control the specimen temperature in the vac-

Table 1

Elastic stiffness of single crystal zirconium (hcp) [16] (unit: 1011 N/m2)

c11 ¼ c22 c33 c44 c66 ¼ 1
2
ðc11 � c12Þ c13 c12

1.434 1.648 0.320 0.353 0.653 0.728

Notation of hcp single crystal: 1ð¼ 2Þ ¼ a-axis, 3 ¼ c-axis.

Table 2

Anisotropic elastic stiffness of Zr–2.5 Nb pressure tube materials by ODF model (unit: 1011 N/m2)

c11 c22 c33 c23 c13 c12 c44 c55 c66

Voigt’s approximation 1.449 1.490 1.446 0.687 0.699 0.713 0.340 0.343 0.375

Reuss approximation 1.437 1.473 1.440 0.691 0.702 0.720 0.338 0.341 0.365

Self-consistent 1.443 1.482 1.443 0.689 0.700 0.717 0.339 0.342 0.370

Notation of sample orientation: 1 ¼ RD (radial direction), 2 ¼ TD (transverse direction), 3 ¼ LD (longitudinal direction).

Fig. 2. A high temperature device for RUS experiment.
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uum environment the distance between the thermo-

couple and specimen was kept <5 mm and maintained

more than 1 h before the measurement. Temperature

difference by a dummy thermocouple on the specimen

was less than 
2 �C in the experimental temperature

range. There was no difference in the resonance fre-

quencies and subsequent elastic constants between the

conditions of vacuum environment and normal atmo-

sphere.

Rectangular parallelepiped Zr–2.5Nb samples were

machined accurately, with dimensions of 2:5 mm �
3:0 mm� 3:5 mm. Calculated frequencies by an input

of dimensions, density, symmetry and initial estimate of

elastic stiffness corresponded to the measured frequen-

cies and vibration modes. Fig. 3 shows a typical reso-

nance ultrasound spectrum of the Zr–2.5Nb alloy. The

initial 30 resonant frequencies were calculated and

compared with measured values. Table 3 shows a typical

example of calculated anisotropic elastic stiffness of Zr–

2.5Nb pressure tube at room temperature by RUS, with

abbreviations of k, l, fcalc: and fmeas: denoting the reso-

nance mode, number of harmonics, calculated resonance

frequency by initial estimate of elastic stiffness, and

measured resonance frequency by RUS, respectively.

The initial 30 resonance frequencies are located in the

range of 200–600 kHz. After iteration and convergence,

the final RMS errors were in the range of 0.05–0.1%,

which can be compared with the RMS error of <0.2%,

and can be regarded as reliable and accurate.

5. Results and discussion

5.1. Anisotropic elastic stiffness by RUS and ODF model

at room temperature

Table 4 shows the anisotropic elastic stiffness of the

Zr–2.5Nb alloy by RUS. Table 5 shows Young’s mo-

duli, which are the inverse of the elastic compliance,

Eii ¼ 1=Sii. Based on the pole figures for (0 0 0 2) in Fig.

1, f-coefficients or Kearn’s factors, which represent the

degree of orientations along the c-axis, are calculated as

fT ¼ 0:6, fR ¼ 0:33 and fL ¼ 0:07, where the subscripts

denote T: transverse, R: radial and L: longitudinal di-

rection [17,18]. This fact implies that �60% of the

(0 0 0 2) pole is aligned along the transverse direction (or

circumferential direction), 33% along the radial direc-

tion, and 7% along the longitudinal direction. Because

the elastic stiffness along the c-axis in the single crystal

zirconium is greater than along the a-axis, i.e. c33 >
c11ð¼ c22Þ (subscripts follow single crystal coordinate;

1ð¼ 2Þ ¼ a-axis, 3 ¼ c-axis in hcp crystalline structure),

the elastic stiffness along a direction of a higher f-coef-

ficient should be greater than along the other directions.

In addition, the elastic stiffness estimated by ODF or

RUS results in cTT > cRR > cLL (subscripts follow sam-

ple coordinate; R: radial direction, T: transverse direc-

tion, L: longitudinal direction), which indicates the

highest elastic stiffness is along the transverse direction

and the lowest along the longitudinal direction, which is

in accordance with the expectation.

There are small differences between the elastic stiff-

ness by ODF and by RUS, as shown in Tables 2 and 4.

The elastic stiffness estimated by ODF is based on the

orientation distribution of an individual crystallite. All

models for macroscopic (specimen) properties from

microscopic (crystallite) properties, such as Voight’s ap-

proximation or the Reuss approximation, share common

assumptions: (i) absence of voids, non-homogeneity, (ii)

cohesion of crystallites occur through very thin grain

boundary regions that are deformed relative to the

crystal interiors, (iii) randomly orientated grains and (iv)

grains large enough so that interfaces remain non-

important [7]. In addition,microscopic variations, such as

size and shape of crystallites, the effect of alloying ele-

ments, the existence of a b-phase, dislocation density

Fig. 3. Typical resonance spectrum of rectangular parallelepiped Zr–2.5Nb pressure tube material. Vertical axis is the intensity and

horizontal axis is the frequency in kHz.
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and distribution, are not reflected in the estimation by

ODF. On the contrary, RUS can give us realistic elastic

stiffness value without any assumption.

One of the important factors in determining elastic

stiffness by RUS is that the initial input of the elastic

stiffness be close enough to the true values in order to

converge during the iteration processes. In an earlier

study, we attempted the averaging method by f-coeffi-

cients from X-ray pole figure data. Using those values as

the initial input for RUS calculations, relatively high

Table 3

An example of calculation for anisotropic elastic stiffness of Zr–2.5Nb pressure tube by RUS

n k l fcalc:
(MHz)

fmeas:

(MHz)

ZR4B025

error (%)

Percentage of modulus contributing to mode

c11 c22 c33 c23 c13 c12 c44 c55 c66

1 4 1 0.22592 0 0 0.01 0.01 0.01 0 �0.01 �0.01 0.64 0.3 0.05

2 4 2 0.30677 0.30722 �0.15 0.01 0.02 0.04 �0.02 �0.01 0 0.05 0.36 0.55

3 1 1 0.31874 0.31899 �0.08 0.06 0.34 1.06 �0.58 �0.26 0.13 0 0.22 0.02

4 7 1 0.33195 0.33206 �0.03 0.33 0.05 1.08 �0.22 �0.61 0.12 0.24 0 0.01

5 8 2 0.33503 0.33528 �0.07 0.03 0.02 0.05 0 �0.03 �0.01 0.95 0 0

6 2 1 0.36381 0.36401 �0.06 0.02 0.04 0.08 �0.05 �0.01 �0.01 0 0.92 0

7 5 1 0.39311 0.39258 0.13 0.24 0.37 1.41 �0.69 �0.58 0.27 0 0 0

8 6 1 0.39414 0.39407 0.02 0.47 0.95 0.03 �0.11 0.07 �0.67 0.22 0.03 0

9 3 2 0.39424 0.39438 �0.04 0.05 0.08 0.2 �0.11 �0.09 0.03 0.01 0 0.82

10 1 2 0.40886 0.40867 0.05 0.22 0.74 0.07 0.01 �0.05 �0.38 0.01 0.1 0.27

11 3 3 0.42385 0.4239 �0.01 0.07 0.06 0.6 �0.17 �0.2 0.05 0.08 0.09 0.43

12 5 2 0.42416 0.42437 �0.05 0.66 0.68 0.66 �0.25 �0.38 �0.38 0 0 0

13 2 2 0.45094 0.45124 �0.07 0.09 0.89 0.12 �0.32 0.09 �0.27 0.03 0.24 0.12

14 5 3 0.45227 0.45234 �0.02 0.99 1.02 0.01 0.08 �0.09 �1 0 0 0

15 3 4 0.46623 0.4662 0.01 0.08 0.05 0.19 �0.04 �0.1 �0.02 0.35 0.38 0.09

16 7 2 0.47757 0.47711 0.1 0.82 0.16 0.08 0.05 �0.19 �0.33 0.2 0.01 0.2

17 6 2 0.48984 0.48971 0.03 0.67 0.07 0.25 �0.04 �0.38 0 0.19 0.23 0.01

18 8 3 0.49608 0.49645 �0.07 1.14 0.11 0.21 0.14 �0.51 �0.34 0.19 0.01 0.05

19 4 3 0.51632 0.51577 0.11 0.02 0.03 0.04 0 �0.01 �0.01 0.25 0.29 0.4

20 2 3 0.52516 0.52475 0.08 0.11 0.2 0.11 �0.05 �0.06 �0.1 0.39 0.09 0.3

21 5 4 0.52866 0.52928 �0.12 0.58 0.21 0.82 �0.29 �0.54 0.14 0.03 0.04 0.02

22 6 3 0.53954 0 0 0.53 0.62 0.51 �0.31 �0.29 �0.22 0.1 0.07 0

23 1 3 0.54105 0 0 0.21 0.64 0.49 �0.29 �0.14 �0.21 0 0.2 0.09

24 7 3 0.54106 0.5414 �0.06 0.57 0.34 0.53 �0.21 �0.25 �0.25 0.19 0.01 0.06

25 5 5 0.55249 0.55226 0.04 0.81 0.79 0.1 �0.06 �0.05 �0.63 0.02 0.01 0.01

26 8 4 0.56607 0.56557 0.09 0.29 0.2 0.25 �0.09 �0.15 �0.13 0.08 0.32 0.23

27 7 4 0.56638 0.56603 0.06 0.36 0.14 0.43 �0.18 �0.22 �0.02 0.38 0 0.1

28 1 4 0.57873 0.57809 0.11 0.16 0.07 0.45 �0.13 �0.26 0.07 0 0.56 0.08

29 6 4 0.58083 0 0 0.45 0.55 0.12 �0.15 0.01 �0.37 0.27 0.11 0

30 6 5 0.60254 0.60246 0.01 0.64 0.12 0.85 �0.21 �0.75 0.15 0.03 0.16 0

Elastic moduli (dynes� 1012/cm2) 1.4737 1.5449 1.4717 0.7429 0.7693 0.7612 0.3338 0.3397 0.3672

Dimensions (cm) Initial Adjusted

d1 0.35300 0.35023

d2 0.40100 0.40259

d3 0.4490 0.45077

RMS error 0.074200

Table 4

Anisotropic elastic stiffness of Zr–2.5Nb pressure tube by RUS (unit: 1011 N/m2)

c11 c22 c33 c23 c13 c12 c44 c55 c66

1.4708 1.5269 1.4533 0.7191 0.7538 0.7446 0.3381 0.3425 0.3696

Notation of sample orientation: 1 ¼ RD (radial direction), 2 ¼ TD (transverse direction), 3 ¼ LD (longitudinal direction).
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RMS errors between calculated and measured frequen-

cies indicated the RUS measurement was not reliable. It

seems that f-coefficients, which imply simple fractions of

crystallites along the three major axes, could not be a

proper approximation to obtain a nine independent

elastic stiffness for the specimen. However, using the

initial estimates by the self-iteration method based on the

ODF model and elastic constant of zirconium single

crystal, RMS error in the range of 0.05–0.1% indicates

the results are very accurate. Generally RMS error <
0:2% is required for the reliable RUS experiment [14]. An

example of RUS results is shown in Table 3.

It is not easy to obtain an elastic modulus along the

radial or transverse direction in the tubular shaped

sample by conventional methods. It has been reported

that the approximated elastic modulus for a-zirconium
is 98.6 GPa [19]. Ashida et al. [20] reported a relation of

the Young’s modulus to temperature as E ¼�0:0656T þ
115:1 by measurement of resonance frequencies in the

bending and torsion test, which comes out the Young’s

modulus of 95.4 GPa at room temperature. Northwood

et al. [21] reported that Young’s moduli of Zr–2.5Nb

alloy are EL ¼ 97:0 GPa, ET ¼ 95:2 GPa, G¼ 35:9 GPa.

All these reported values are restricted to a certain di-

rection or assumption of isotropic properties. However,

as shown in Table 5, RUS can determine all the elements

of elastic stiffness, including Young’s moduli along the

radial, transverse, and longitudinal directions as well as

the shear moduli and bulk modulus at once. Because of

the differences in materials, especially in anisotropic

properties, small differences of the elastic moduli are

quite natural.

5.2. Temperature dependence of anisotropic elastic con-

stants of Zr–2.5Nb pressure tube

Fig. 4 shows the cij of Zr–2.5Nb pressure tube ma-

terials in the range of room temperature �500 �C, with
the subscripts ‘l’, ‘t’, ‘r’ denoting longitudinal, transverse

and radial direction, respectively. Fig. 5 shows the

Young’s moduli and shear moduli.

The elastic constants decrease as the temperature

increases and the elastic constants along the transverse

direction are clearly higher than those along the radial

or longitudinal direction. As shown in Fig. 4, the elastic

stiffness values are positioned within the c33 and c11 of

single crystal zirconium, which is the upper and lower

bound [16]. Because (0 0 0 2) pole is not a major orien-

tation along the radial or longitudinal direction, more

random orientation distribution is expected and there is

little difference in the elastic constant along the radial

direction and those along the longitudinal direction.

Young’s modulus and shear modulus show a similar

tendency in Fig. 5.

A crossing phenomenon of the shear component of

elastic stiffness along the longitudinal direction and ra-

dial direction are observed in the temperature range of

120–150 �C. There are several possibilities to explain the

Table 5

Anisotropic elastic moduli of Zr–2.5Nb pressure tube converted from the elastic compliance (unit: 109 N/m2)

Young’s moduli Shear moduli Bulk modulus

E11 E22 E33 G44 G55 G66 K

96.18 104.32 96.79 33.81 34.59 36.96 98.70

Notation of sample orientation: 1 ¼ RD (radial direction), 2 ¼ TD (transverse direction), 3 ¼ LD (longitudinal direction).

Fig. 4. Temperature dependency of elastic stiffness of Zr–2.5Nb

pressure tube material. (a) Normal components of elastic stiff-

ness. (b) Shear components of elastic stiffness.
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phenomenon: (1) relaxation of the hydrogen atom in the

zirconium lattice (Bordoni peak) [22]; (2) intrinsic char-

acteristics of the crossing of c44 and c66 of a zirconium

single crystal; (3) transition of the a-Zrþ hydrogen atom

and metastable c-hydride (or stable d-hydride); and (4)

phase transition of c-hydride to d-hydride [23]. As shown

in Fig. 4, this fact could correlate to the crossing char-

acteristics of c44 and c66 of a zirconium single crystal in

the temperature range. However, the reason why the

crossing characteristics occurred in the temperature

range is not clear at this point. Since the mechanical

damping, Q�1 or high frequency ultrasonic loss is related

to the microstructural inhomogeneities and calculated

from the width of resonance peak, further investigation

of the resonance frequencies as well as a mechanical

damping, Q�1 on the zirconium material with various

hydrogen contents might be useful to explain the crossing

phenomenon. Mechanical damping, Q�1 could be cor-

related to the content and status of hydrogen atom in

zirconium lattice.

6. Conclusion

1. The dynamic anisotropic elastic stiffness of Zr–2.5Nb

pressure tube materials has been determined by RUS.

The initial estimate for RUS has been obtained from

a consideration of ODF by X-ray pole figures and the

elastic stiffness of a single crystal zirconium.

2. There is a small difference between the elastic stiffness

by ODF model and RUS at room temperature. It

implies that the values by RUS are closer to the true

values.

3. The elastic constant cij decreases gradually as the

temperature increases. The elastic constants along

the transverse direction are greater than those along

Fig. 5. Temperature dependency of elastic moduli of Zr–2.5Nb pressure tube material. (a) Young’s moduli of pressure tube. (b) Shear

moduli of pressure tube.
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the longitudinal or radial direction. This tendency

agreed with the case of Young’s moduli or shear mo-

duli.

4. The longitudinal component and radial component

of shear moduli are crossed at 120–150 �C. This fact
could correlate to the crossing characteristics of the

c44 and c66 of a zirconium single crystal in the temper-

ature range.

5. RMS error of <0.2% by RUS indicates the measure-

ments are reliable and accurate.

6. The RUS method is a very sensitive tool for de-

termining the elastic constants. It can be a useful

method for characterizing the effect of material de-

gradation due to neutron irradiation.
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